Acta Cryst. (1967). 23, 398 The Crystal and Molecular Structure of Nickel(II) Bis(N, N-di-n-propyldithiocarbamate)*

By GIORGIO PEYRONEL AND ANNA PIGNEDOLI Istituto di Chimica Generale dell'Università degli Studi, Modena, Italy

(Received 12 July 1966 and in revised form 3 October 1965)

Nickel(II) bis(*N*,*N*-di-n-propyldithiocarbamate) is rhombohedral, space group $R\overline{3}$, with nine formula units in the hexagonal unit cell, $a=25\cdot20$, $c=8\cdot30$ Å. The crystal and molecular structure has been determined by three-dimensional Patterson and Fourier syntheses, and refined by isotropic and anisotropic least-squares methods, with a final *R* value of 0.075. Nickel is centrosymmetrically linked to two dithiocarbamic ligands, through four sulphur atoms; bond lengths: Ni–S 2.209 and 2.197, S–C 1.722 and 1.693, C–N 1.33 Å. The \cdots S₂C=NR₂ form gives, therefore, an important contribution to the molecular structure. The (C₂NCS₂)₂Ni part of the molecule is nearly planar. The mean N–C bond distance of 1.47 Å corresponds to the single-bond value. The intermolecular distances of two CH₂ carbon atoms to one sulphur atom (3.75 and 3.68 Å) are shorter than the van der Waals CH₂...S contacts (3.85 Å). From the difference Fourier synthesis and from the $\rho_0 - \rho_c$ values at the calculated positions the CH₂ hydrogen atoms were well localized; one of these shows a CH···S intermolecular interaction or hydrogen bond (2.88 Å).

Introduction

Dithiocarbamates have been the object in recent years of a growing interest because of their biological activity and their applications. Despite the large volume of literature on this class of compound (Thorn & Ludwig, 1962), many problems are still open regarding the relations of their physico-chemical and biological behaviour to their molecular structure. Owing to the fact that increasing the size of the alkyl group in the dialkyldithiocarbamates has an influence on some biological properties of these compounds, it may be of interest to compare the structures of homologous derivatives of the same metal.

A two-dimensional crystal structure analysis of copper(II) bis(N,N-di-n-propyldithiocarbamate) (Peyronel & Pignedoli, 1959*a*, *b*; Pignedoli & Peyronel, 1962) has shown a pyramidal pentacoordination of copper to five sulphur atoms through a coordinative dimerization of the molecule. A similar structure was found for copper(II) bis(N,N-diethyldithiocarbamate) (Bonamico, Dessy, Mugnoli, Vaciago & Zambonelli, 1965). A three-dimensional analysis of copper(II) dipropyldithiocarbamate is now in progress in this Institute.

A preliminary study, with rotating crystal and trialand-error methods, on nickel(II) bis(N,N-di-n-propyldithiocarbamate) was done some years ago (Peyronel, 1940, 1941), indicating the planar coordination of nickel to four sulphur atoms; the results of the present three-dimensional analysis of this complex may be compared with those recently obtained with the same method for the structure of nickel(II) bis(N,N-diethyldithiocarbamate) (Shugam & Levina, 1960; Bonamico, Dessy, Mariani, Vaciago & Zambonelli, 1965). Physico-chemical properties of the transition-metal dithiocarbamates were early studied by L. Cambi and L. Malatesta (Cambi & Coriselli, 1936; Malatesta, 1937, 1940a, b and further works).

Crystal data

Rhombohedral. The hexagonal cell has been used. $a=25\cdot20\pm0\cdot03$, $c=8\cdot30\pm0\cdot02$ Å, V=4564 Å³, Z=9 $d_{exp}=1\cdot337$ g.cm⁻³, $d_{calc}=1\cdot3375$ g.cm⁻³, F(000)=1962

Space group $R\overline{3}$ (no.148) from observed general condition: -h+k+l=3n.

Intensity measurements and corrections

Intensities of hkl reflexions, with l from 0 to 5, were collected from a prismatic crystal about 0.39 mm in diameter, selected from several crystals, which frequently present twinning around the *c* axis. Intensities of 0kl reflexions were collected from a cut crystal about 0.30 mm in diameter.

The equi-inclination integrating Weissenberg technique, with multiple film, was used, recording 1327 independent reflexions, corresponding to about 58% of those possible with Cu K α radiation, and their intensities were measured photometrically. A first scaling of intensities was done by correlation of multiple films of each layer with their common reflexions and of the different *hkl* layers with their reflexions which are common to the 0*kl* layer. A final scaling of the different layers was done, with an independent scale factor *K* for each layer, after the introduction of the hydrogen atoms in the structure factor calculation, at the end of the isotropic least-squares refinement.

Corrections of intensities were made for Lorentzpolarization and absorption factors and for the spot size of the upper layers. Since there was evidence of

^{*} Work supported by the Consiglio Nazionale delle Ricerche of Italy. A report was presented at the VII International Congress of Crystallography of the I.U.Cr., Moscow, July 12–21, 1966.

the existence of a definite secondary extinction this effect was corrected at the end of an isotropic leastsquares refinement (performed only with those reflexions having a value of $\sin \theta/\lambda > 0.35$, which are very little affected by secondary extinction) by using the method of Housty & Clastre (1957), based on the relation: $F_0 = F_c \exp(-kI_c)$.

The secondary extinction has the maximum value in the hk0 plane and decreases almost regularly in the upper layers with the increase of the *l* value (Fig. 1). This method of secondary extinction correction, although less accurate than other more recent but more laborious methods (Åsbrink & Werner, 1966), may be considered sufficiently reliable in this case, using photographic data.

Determination and refinement of the structure

It was possible to find the correct orientation of the molecule only by means of three-dimensional Patterson syntheses; Ni, S(1), S(2), and C(0) positions were well identified and some evidence was obtained for the position of N, C(1), and C(2). By two- and three-dimensional Fourier syntheses, all the non-hydrogen atoms were located. A reliability index $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o| = 0.20$ was obtained.

The atomic scattering factors of Hanson and coworkers (Hanson, Herman, Lea & Skillman, 1964) were used. Those of Ni and S were corrected for anomalous dispersion.

Table 1. Positional parameters of non-hydrogen atoms in fractional coordinates $(\times 10^4)$ and their estimated standard deviations (Å)

	x/a	y/b	z/c	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	
Ni	5000	5000	0000				
S(1)	5402	4438	0778	0.002	0.002	0.002	
S(2)	4213	4073	-0316	0.002	0.002	0.002	
N	4508	3250	0769	0.007	0.007	0.007	
C(0)	4679	3828	0432	0.009	0.008	0.008	
C(I)	4930	3074	1466	0.010	0.010	0.009	
Č(2)	5222	2871	0159	0.013	0.012	0.012	
C(3)	5615	2637	0984	0.013	0.014	0.013	
C(4)	3866	2761	0513	0.009	0.009	0.009	
C(5)	3488	2624	1986	0.010	0.010	0.010	
CÌŚ	2818	2135	1665	0.010	0.010	0.010	

The structure was then refined by the least-squares method for the positional parameters and isotropic temperature factors of each atom, using the reflexions with a value of sin $\theta/\lambda > 0.35$ and introducing into the F_c calculation only the non-hydrogen atoms; these reflexions are practically unaffected by hydrogen atoms and by secondary extinction. The secondary extinction was then corrected in the manner described. At this stage an R = 0.116 was obtained. Structure factors were then calculated by introducing the hydrogen atoms located in their theoretical positions, tetrahedrally bonded to the C atoms at a distance C-H of 1.09 Å, and assuming for the hydrogen atoms the isotropic temperature factors of the carbon atoms to which they were linked. After a few other isotropic least-squares cycles to refine only the positional and thermal parameters of non-hydrogen atoms, the reliability index came down to R = 0.095.

Taking as fixed the calculated positional parameters and the assumed isotropic temperature factors for hydrogen atoms, the positional parameters and the anisotropic temperature factors of non-hydrogen atoms were then refined with three anisotropic leastsquares cycles until the stationary condition was reached. The reliability index was then reduced to the final value, R=0.075.

The final positional parameters of non-hydrogen atoms with their e.s.d.'s (in Å) are given in Table 1;

Table 3. Calculated	' positional	parameters	in fractional
coordinates $(\times 10^4)$	and assum	ied isotropic	temperature
factor	s for hydro	ogen atoms	

	x/a	y/b	z/c	В
H(11)	5289	3460	2130	4∙8 Ų
H(12)	4684	2701	2321	4.8
H(21)	5512	3260	-0612	6.1
H(22)	4863	2503	-0551	6.1
H(31)	5972	3003	1696	7.6
H(32)	5326	2251	1756	7.6
H(33)	5825	2491	0058	7.6
H(41)	3664	2895	-0452	4.4
H(42)	3857	2346	0101	4.4
H(51)	3508	3042	2418	5.0
H(52)	3675	2464	2930	5.0
H(61)	2629	2298	0725	5.8
H(62)	2799	1714	1242	5.8
H(63)	2551	2042	2748	5.8

Table 2. Thermal parameters of non-hydrogen atoms (and their e.s.d.'s)b, as given here, is defined by

 $T = \exp \left\{-10^{-5}(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + 2b_{12}hk + 2b_{13}hl + 2b_{23}kl)\right\}$

				• •								
	b_1	1	<i>b</i> ₂	2	<i>b</i> 3	3	b_1	2	<i>b</i> ₁₃	1	<i>b</i> 2	23
Ni	229	4	202	4	1427	41	105	3	22	10	48	10
S(1)	232	5	230	5	1995	53	110	4	-43	12	67	12
S(2)	246	5	213	4	1651	56	105	4	- 53	11	38	11
Ň	273	17	208	15	1509	151	131	13	- 53	37	28	35
C(0)	266	19	206	17	1214	178	126	15	100	43	1	40
Ĉ(I)	329	24	257	21	1719	207	185	19	-16	53	77	48
C(2)	402	32	357	29	2930	284	232	26	2	72	19	69
$\tilde{C}(3)$	396	34	462	37	4083	356	288	31	-140	83	-158	87
Č(4)	272	21	201	17	1276	186	98	16	- 60	48	0	42
Č(5)	283	22	250	20	1747	222	127	18	57	53	- 8	49
C(6)	303	24	241	21	1872	218	86	18	-6	53	36	50
· ·												

Table 4. Observed and calculated structure factors ($\times 10$)

нк	L	FO FC	нкі	. FO	FC	нкс	FO	FC	HKL	FO	FC	н	ĸL	FO	FC
H 369000000000000000000000000000000000000	L	F0 FC FC 751 -65 865 97 1154 123 109 -11 544 54 454 -54 303 30 124 -12 300 244 -13 1254 -23 300 244 -13 1257 -122 300 244 -13 1589 177 1592 177 1589 177 1589 177 1589 177 1592 177 1592 177 403 44 415 4415 -127 300 244 -13 124 -13 227 22 126 -27 221 -33 307 -12 128 -127 221 -25 321 -35 321 -35 321 -35 321 -32 321 -35 321 -35 324 -27 2234 -19 224 227 2234 -19 224 227 2234 -19 224 227 225 -22 234 -19 226 -22 234 -19 226 -22 234 -19 226 -22 234 -19 226 -22 231 -35 355 -5 324 -22 227 22 227 22 227 22 227 22 227 22 227 22 227 22 229 -22 127 -32 33 3 365 -5 5 324 -22 226 -22 34 -19 226 -22 227 22 227 22 221 -32 33 3 362 -22 326 -22 34 -27 353 -3 35 35 -5 324 -22 226 -22 365 -3 35 35 -5 326 -22 365 -3 35 35 -5 326 -2 236	H K L 1 5 14 14 5 14 14 14 6 15 16 16 7 11 14 14 0 6 15 16 0 6 15 16 14 14 14 16 0 6 15 16 1 16 16 16 0 10 16 16 0 10 16 16 0 11 16 16 14 17 6 18 15 11 16 16 16 16 200 7 17 18 1 22 16 2 20 1 17 18 1 22 16 2 20 7 17 18 1 22	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FC 126 967 299 340 133 406 221 133 406 93 14 302 221 322 401 328 169 -242 401 328 51 601 -213 851 439 -123 851 439 -123 851 439 -123 851 439 -123 851 439 -123 851 439 -123 851 439 -207 170 -213 851 167 9 556 -200 1063 673 8673 8673 8673 8673 8673 8673 867	$ \begin{array}{c} \textbf{H} \\ \textbf{K} \\ \textbf{L} \\ \textbf{17} \\ \textbf{3} \\ \textbf{3} \\ \textbf{-1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{3} \\ \textbf{-1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{3} \\ \textbf{-1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{3} \\ \textbf{-1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{4} \\ \textbf{4} \\ \textbf{-1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{4} \\ \textbf{4} \\ \textbf{-1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{4} \\ \textbf{4} \\ \textbf{-1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{4} \\ \textbf{4} \\ \textbf{-1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{1} \\ \textbf{2} \\ \textbf{2} \\ \textbf{2} \\ \textbf{3} \\ \textbf{6} \\$	F0 959 177 256 321 124 1795 809 2540 1398 1398 1398 1398 1498 1398 1478 2017 1398 1410 2017 20	FC -966 -216 -216 -718 -77 -844 2561 -977 -1442 2561 -976 -1443 819 356 636 -114 414 819 -120 91477 -1189 -628 -1752 -1860 -1141 279 -628 -1752 -1860 -548 636 -1141 279 -1285 390 -187 -281 8672 -1141 279 -1141 279 -1167 -1285 390 -1141 279 -1285 -1141 279 -1285 -1141 279 -1285 -1141 279 -1285 -1141 279 -1285 -1141 279 -1285 -1189 -1141 -1285 -1189 -1141 -1285 -1187 -2815 -1187 -285 -1187 -285 -1187 -285 -1187 -285 -1187 -285 -286 -1187 -285 -286 -1187 -285 -286 -1187 -285 -286 -1187 -285 -286 -1187 -285 -286 -1187 -285 -286 -241 -962 -2789 -1187 -285 -286 -241 -962 -2789 -187 -285 -286 -241 -962 -229 -520 -229 -520 -520 -520 -520 -229 -520 -520 -520 -520 -229 -520 -520 -520 -520 -520 -520 -285 -526 -187 -285 -6826 -241 -937 -1285 -6826 -5304 -546 -546 -546 -546 -546 -546 -546 -241 -967 -1285 -6826 -5304 -546 -528 -5304 -546 -546 -528 -528 -6227 -7899 -204 -520 -520 -520 -520 -520 -520 -520 -520 -520 -227 -229 -520	H K L 21 10 -1 1 11 -1 3 11 -1 4 11 -1 1 11 -1 12 11 -1 13 11 -1 14 11 -1 12 11 -1 14 11 -1 15 11 -1 16 11 -1 17 12 -1 10 12 -1 13 12 -1 14 12 -1 13 12 -1 14 12 -1 13 13 -1 14 12 -1 13 13 -1 14 12 -1 13 13 -1 14 12 -1 13 13 -1 14 13 -1 15 13 -1 16 14 -1 17 15 -1 16 14 -1 17 15 -1 17 15 -1 16 16 -1 17 -1 10 17 -1 10 17 -1 10 17 -1 10 17 -1 11 18 -1 12 18 -1 11 18 -1 12 18 -1 13 18 -1 14 18 -1 14 19 -1 14 19 -1 15 18 -1 17 17 -1 10 17 -1 10 17 -1 10 17 -1 10 17 -1 11 18 1-1 2 18 -1 11 18 -1 12 19 -1 13 20 -1 14 20 -1 13 20 -1 13 20 -1 13 20 -1 13 20 -1 13 20 -1 13 20 -1 14 20 -1 15	FO 2413 662 777 2312 867 7344 454 2127 3257 4571 344 454 2127 3257 1232 2323 1277 4357 1232 2323 1277 1232 2323 1232 2323 1232 2323 12533	FC -2417 -387 -8942 -7506 -288 -187 -288 -187 -288 -187 -288 -187 -288 -187 -288 -187 -248 -248 -247 -3247 -248 -247 -248	H 11346790230235689112457180141346790125681225124578011349032356891124578011346792135689112457801131689122457	L 27272272727272727272727272727272727272	F0 4415 2859 1850 1039 3766 6822 29277 103129 29277 1032067 1033 29277 1032067 1032 1032 29277 103127 1032067 10322 103322 103322 1032277 1032277 1032277 1032277 1032277 1032277 1032277 1032277 1032277 1032277 1032277 1032277 1032277 1032277 1032277 1032277 1032277 10322777 1032277 1032277 10322777 1032777777777777777777777777777777777777	FC $325866475477-148866777-148866777-148866777-148866777-14886777-14886777-14886777-14886777-14887677-112876777-112876777-112876777-112876777-112876777-112876777-112876777-11127777-1127777-11127777-20000000000$
10 1C 1C 13 10 13 10 14 10 19 10 2 11 5 11 8 11 11 11 14 11 17 11 3 12 6 12 9 12 15 12 15 12 15 12 15 12 16 10 17 13 10 13 10 13 10 10 10 10 11 11 11 11 11 11 12 11 12 11 13 12 12 11 13 11 14 11 15 11 16 10 17 11 17 11 17 11 18 11 11 11 11 11 11 11 12 10 13 10 13 10 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	344 459 350 22954 22954 2217 -265 590 423 5590 423 327 524 327 -615 1226 -615 1226 -615 1226 -724 1834	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	353 2804 168 715 165 156 400 256 404 483 387 42 904 224	304 302 208 -544 -246 -380 261 462 133 362 479 857 -744 -854 202 189	$\begin{array}{c} 9 \ 19 \ -1 \\ 12 \ 19 \ -1 \\ 3 \ 20 \ 1 \\ 4 \ 20 \ -1 \\ 7 \ 20 \ -1 \\ 7 \ 20 \ -1 \\ 1 \ 20 \ -1 \\ 1 \ 20 \ -1 \\ 1 \ 20 \ -1 \\ 1 \ 20 \ -1 \\ 1 \ 21 \ -1 \\ 2 \ 21 \ -1 \\ 2 \ 22 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 1 \ 23 \ -1 \\ 2 \ -1 \ -1 \\ 2 \ -1 \ -1 \\ 2 \ -1 \ -1 \ -1 \ -1 \ -1 \ -1 \ -1 \ $	127 65 359 250 444 380 215 277 182 209 162 77 318 265 77 318 265 77 5457 1422	-125 -109 -324 -229 420 -371 89 186 -247 -210 333 -120 92 276 -260 282 4941 1495	19 1 2 4 5 7 8 10 13 14 16 17 19 20 2 3 5 6 8	5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7	256 556 1972 127 2410 1616 1736 774 736 489 112 118 453 671 786 215 1045	- 29 56 207 11 - 246 - 173 182 80 - 74 - 7 50 12 - 14 68 80 - 22 - 106 12

400

GIORGIO PEYRONEL AND ANNA PIGNEDOLI

Table 4 (cont.)

нкі	FO FO	c	нк	L F	0	FC	н	ĸι	FO	FC	н	ĸL	FO	FC	н	ĸL	FO	FC
$ \begin{array}{c} 18 & 7 \\ 7 & 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41 41 42 41 42 41 42 41 42 43 44 42 44 44 44 44 44 44 44 44	$\begin{array}{c} \textbf{11} \textbf{17} \textbf{18} \textbf{18} \textbf{18} \textbf{19} \textbf{19} \textbf{19} \textbf{19} \textbf{20} \textbf{20} \textbf{21} \textbf{11} \textbf{22} \textbf{22} \textbf{25} \textbf{5} \textbf{8} \textbf{11} \textbf{12} \textbf{22} \textbf$		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 112\\ 9591\\ 1275\\ 1297\\ 2-601\\ 4126\\ 5-251\\ 2-601\\ 4126\\ 2-601\\ 4126\\ 2-251\\ 2-601\\ 4126\\ 2-251\\ 2-25$	$\begin{array}{c}147703336699222558111444770033669922255811114477700336699222558811144777003366992225588111447770033669922255881114177733669921225588111111177336699212255881111111773366992122558811111117733669921225588111111177336699212255881111111773366992122558811111117733669921225588111111177336699212255881111111773366992122558811111117733669921225588111111177336699212255881111111773366992122558811111117733666992122558811111117733669921225588111111177336699212255881111111773366992122558811111117733669921225588111111117733669921225588111111117733669921225588111111117733669921225588111111117733669921225588111111117733666992122558811111111177336669921225558811111111111111111111111111111$	5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7	285 132 132 1419 2069 1236 180 1236 180 1236 180 271 4508 271 4508 271 4508 271 4508 271 4508 271 4508 271 450 274 1064 291 1488 2918 2626 1054 2733 2004 1055 2777 1006 12777 1006 12777 1006 12777 1006 12777 1006 10527 1006 12777 1006 10527 1006 10527 1056 1052777 1006 1052777 1006 1052777 1006 1052777 1006 1052777 1006 1052777 1006 1052777 1006 1052777 1006 1052777 1006 1052 1052 1052 1052 1052 1056 1052 1056 1052 1056 1052 1056 1056 1057 105777 1056 105777 1056 105777 1056 105777 105777 1057 105777 1057 105777 105777 1057 105	$\begin{array}{c} -298\\ 111\\ -195\\ -210\\ -210\\ -369\\ -140\\ -127\\ -269\\ -1200\\ -148\\ -484\\ -280\\ -174\\ -885\\ -188\\ -488\\ -174\\ -885\\ -232\\ -232\\ -174\\ -885\\ -232\\ -232\\ -174\\ -885\\ -266\\ -173\\ -533\\ -266\\ -570\\ -562\\ -270\\ -562\\ -270\\ -562\\ -238\\ -109\\ -307\\ -562\\ -238\\ -266\\ -332\\ -238\\ -119\\ -305\\ -266\\ -332\\ -238\\ -119\\ -305\\ -266\\ -332\\ -116\\ -315\\ -266\\ -332\\ -116\\ -711\\ -71\\ -554\\ -296\\ -116\\ -711\\ -296\\ -116\\ -711\\ -238\\ -266\\ -238\\ -166\\ -238\\ -266\\ -238\\ -166\\ -711\\ -238\\ -266\\ -238\\ -166\\ -711\\ -216\\ -75\\ -256\\ -238\\ -166\\ -711\\ -75\\ -256\\ -296\\ -146\\ -711\\ -259\\ -256\\ -238\\ -166\\ -711\\ -556\\ -266\\ -238\\ -210\\ -75\\ -75\\ -75\\ -75\\ -75\\ -75\\ -75\\ -75$	$ \begin{array}{c} 1 & 1 \\ 2 & 1 \\ 1 & 1 $	344444444444444444444444444444444444444	$\begin{array}{c} 681\\ 10303\\ 1991\\ 10303\\ 1991\\ 1195\\ 4773\\ 3627\\ 721\\ 4868\\ 1949\\ 1282\\ 1446\\ 1362\\ 1477\\ 233627\\ 41376\\ 1282\\ 1468\\ 127562\\ 1360\\ 127562\\ 1360\\ 127562\\ 1360\\ 127562\\ 1265\\ 1942\\ 2355\\ 1942\\ 2355\\ 1942\\ 2355\\ 16437\\ 16137\\ 9775\\ 3679\\ 9422\\ 2597\\ 2880\\ 371\\ 1255\\ 36799\\ 9412\\ 2597\\ 2880\\ 3773\\ 16137\\ 9799\\ 9422\\ 2597\\ 2880\\ 3773\\ 16137\\ 9799\\ 9422\\ 2597\\ 2880\\ 3773\\ 16137\\ 9799\\ 9422\\ 2597\\ 2880\\ 3773\\ 11924\\ 1755\\ 36799\\ 9412\\ 2597\\ 2880\\ 3773\\ 11924\\ 17553\\ 36779\\ 9422\\ 2880\\ 3773\\ 3577\\ 3577\\ 3979\\ 9422\\ 2597\\ 2880\\ 3773\\ 3577\\ 3573\\ 3679\\ 9422\\ 2597\\ 2880\\ 3773\\ 3577\\ 3573\\ 3577\\ 3573\\ 3577\\ 3573\\ 3577\\ 3573\\ 3577\\ 3573\\ 3577\\ 3573\\ 3577\\ 3573\\ 3577\\ 3573\\ 3577\\ 35$	71 -186 1022 153 1140 -043 -3407 -392 -396 -129 -396 -129 -396 -129 -232 -257 105 -1821 -325 -174 -557 -1821 -325 -174 -557 -1821 -238 363 -232 -2325 -174 -557 1320 -232 -2325 -174 -557 1320 -238 363 -238 361 -238 -238 -237 -257 105 -182 -357 -182 -238 -205 -987 -197 -1559 -1289 -877 -1559 -1282 -2323 -879 -1282 -2323 -889 -595 -1282 -2323 -880 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -1282 -2323 -2323 -1282 -2323 -2323 -2323 -1282 -2323	4578 0113467792235689122457801313667905811245780113467902223568912245811346702356891245781131467792356892145781131467923568921457811111111111111111111111111111111111	333333333333333344444444444445555555555	$\begin{array}{c} 1347\\ 3418\\ 375\\ 37$	$\begin{array}{c} -1.234 \\ -3.254 \\ -3.254 \\ -3.254 \\ -4.29 \\ -3.254 \\ -4.29 \\ -3.254 \\ -4.29 \\ -3.254 \\ -4.29 \\ -1.234 \\ $

Table 1 (cont)

HKL	FO	FC	HKL	FO	FC	HKL	FO	FC	HĶL	FO	FC	HKL	FO	FC
3 11 4	327	300	8 18 -4	336	364	4 3 -5 5 3 5	203	192 -1141	10 8 5 13 8 5	477 389	462 - 344	13 15 -5	53	-49
6 11 4	380	-333	2 19 4	88	-168	7 3 -5	951	-859	16 8 5	147	134	3 16 5	191	-143
7 11 -4 9 11 4	842 203	-858	3 19 -4 5 19 4	330	349	8 3 5 10 3 - 5	212	-181	18 8 -5	474	-408	5 16 -5 6 16 5	79 439	-125
10 11 -4	188	-160	6 19 -4	97 71	70	11 3 5	883	-865	295	280	-324	8 16 -5	353	427
15 11 4	74	38	1 20 -4	109	115	14 3 5	271	-366	5 9 5	783	753	12 16 5	59	93
16 11 -4	82 79	-149	3 20 4	168 274	113	16 35 17 3 5	141 389	-229	79-5	409	-406	1 17 5	406	-386
1 12 4	456	-414	6 20 4	88	-99	19 3 -5	115	-228	10 9 -5	627	670	4 17 5	277	-265
2 12 -4 4 12 4	221	-187	2 21 -4	182	-168	20 3 5	403	-389	13 9 -5	218	-258	9 17 -5	156	-121 109
5 12 -4	180	-66	4 21 4	206	-201	345	350	-345	14 9 .5 16 9 -5	124	116	1 18 -5	218	216
8 12 -4	327	355	7 21 4	150	-190	6 4 5	1036	967	17 9 5	71	-84	4 18 -5	285	-25
10 12 4	783	759	2 22 4	71	-45	84-5	571	543 318	2 10 -5 3 10 5	1207	1142	5'18 5 7 18'-5	247	213
13 12 4	374	-361	5 22 4	135	106	11 4 -5	439	-432	5 10 -5	492	-500	8 18 5	85	151
14 12 -4	203	186 -102	6 22 -4 2 24 -4	38 91	110	12 4 5 14 4 -5	589 386	549 398	6105 810-5	218 253	-153	10 18 -5 2 19 -5	94 79	127
17 12 -4	91	-195	1 0 -5	512	-497	15 4 5	265	303	9 10 5	574	-590	3 19 5	115	161
3 13 -4	751	-806	4 0 - 5	1077	1035	17 4 -5	353	352	12 10 -5	130 559	102 565	6 19 5 8 195	79 47	-90
5 13 4	244	-277	505	742	719	20 4 -5	250	256	14.10 -5	150	198	1 20 5	300	-345
8 13 4	415	-427	805	742	685	1 5 5	1174	-1076	18 10 5	47	-142 -74	3 20 -5 4 20 5	130 265	-183
9 13 -4	112	-79	10 0 -5	1221	1190	3 5 - 5	494	-377	1 11 5	383	-311	6 20 -5	233	269
14 13 4	68	-34	13 0 -5	147	-69	6 5 - 5	150	-159	4 11 5	365	-128	2 21 5	82	106
15 13 -4	191	-166	14 0 5	983	944	9 5 - 5	336	331	6 11 -5	150	198	5 21 5	118	-112
4 14 -4	668	640	20 0 5	191	-145	12 5 -5	415	-385	10 11 5	88	-549	3 22 5	118	114
6 14 4 7 14 -4	639 394	647 -426	23 0 5	124	-160	13 5 5	677	-653	12 11 -5	374	-372	1 24 -5	182	-178
9144	271	-271	3 1 5	1898	-1978	16 5 5	303	-366	4 12 -5	803	782	0 3 - 6	206	273
10 14 - 4 12 14 4	406	429	5 1 -5	703	-679	18 5 -5	82	25	5 12 5	383	-332	066	1271	1327
13 14 -4	244	284	8 1 -5	185	-137	2 6 5	1554	1641	8 12 5	845	818	096	603	-597
15 14 4	82 733	-721	9 1 5 11 1 -5	259 471	165 456	565 76-5	391 574	-323	10 12 -5 11 12 5	486 447	495	0 9 -6	974	-1037
2 15 -4	450	-465	12 1 5	91	-150	8 6 5	347	-318	13 12 -5	141	164	0 12 -6	1001	1028
5 15 -4	288	299	14 1 -5	430	-1085	10 6 -5	200	182	14 12 5 16 12 -5	82 53	-154 84	0 18 6 0 18 -6	468 285	449 -292
7 15 4	156	-139	17 1 -5	394	-358	14 6 5	371	354	2 13 -5	1004	-1043	0 21 -6	165	-212
10 15 4	71	-127	20 1 -5	91	180	17 6 5	203	-190	6 13 5 8 13 -5	300 103	-252	0 4 -7 0 7 -7	786	790
11 15 -4	74 59	-75	21 1 5	94 150	-10	19 6 -5	391	-422	9 13 5	218	-241	0 8 7	609	639
5 16 4	124	-130	1 2 5	441	435	2 7 -5	515	-456	12 13 5	100	-155	0 10 -7	288	-285
6 16 -4 8 16 4	327	338 560	3 2 - 5	539 1848	-528 1847	375	200	215 337	14 13 -5	153	-189	0 13 -7	303	-454
9 16 -4	244	-231	6 2 -5	871	884	675	341	-341	4 14 5	536	481	0 20 7	127	185
$12 16 -4 \\ 1 17 -4$	150	165	92-5	683 597	-599	87-5975	344 439	366 -405	6 14 -5 7 14 5	227	315	048	494	499
3 17 4	94	-149	10 2 5	668	591	11 7 -5	191	-221	9 14 -5	174	-100	0 10 8	356	367
6 17 4	409	-387	12 2 - 5 13 2 5	227	223	17 7 -5	162	183	10 14 5 12 14 -5	492 227	507 255	0 11 -8 0 14 -8	489 138	-542
7 17 -4	247	207	15 2 -5	371	370	18 7 5	62	-38	13 14 5	77	-36	0 16 8	403	450
10 17 -4	77	-128	18 2 -5	609	561	3 8 - 5	648	571	2 15 5 4 15 -5	138	99 -238	03-9	262 215	-286
1 18 4 2 18	656	-640	19 2 5 21 2 -5	191	-188	485	592	598	5 15 5	135	-87	0 6 -9	368	479
4 18 4	253	274	22 2 5	303	327	7 8 5	371	315	10 15 -5	300	- 394	0 12 9	212 180	283
5 18 -4 7 18 4	674 238	-690 236	1 3 - 5 2 3 5	162 177	-118 180	98-5	468	-473	11 15 5	115	-90	0 4-10	177	212

their thermal parameters, with their e.s.d.'s, in Table 2; the positional parameters of hydrogen atoms, calculated on the final positions of carbon atoms, and their assumed isotropic temperature factors in Table 3; the observed and calculated structure factors in Table 4. The peak heights and curvatures for non-hydrogen atoms, and their e.s.d.'s, obtained from differential synthesis, are given in Table 5.

Three cycles of anisotropic least-squares refinement were also carried out with the use of 1213 reflexions, which were less affected by, and were not corrected for, secondary extinction. These reflexions were selected by taking the reflexions nearer to the origin of the plot of log F_o/F_c versus I_c on the left side of the vertical lines indicated on the diagrams of Fig. 1. A final value of R=0.087 was obtained. The bond distances and angles corresponding to this refinement are given in Table 8 for comparison with those obtained from the 1327 reflexions corrected for secondary extinction. Similarly the other functions calculated for this refinement with the 1213 uncorrected reflexions do not differ significantly from those obtained from the 1327 corrected reflexions and are therefore omitted from the text.

Computing methods

The following calculations were performed on an IBM 1620 (20 K) computer at the Centro di Calcolo elettronico dell'Università di Modena:

(i) Intensity corrections; structure factor calculations; Patterson, F_o and F_o-F_c syntheses with the programs of Scatturin and co-workers (Albano, Bellon & Pompa, 1963; Pompa, Albano, Bellon & Scatturin, 1963) and of King and Van der Helm (King & Van der Helm, 1963; King, 1964). (ii) Isotropic least-squares refinement with the program of D.Van der Helm revised to card by C.N. Caughlan and G.W.Svetich (Chemistry Department, Montana State College), using 3×3 matrices for the

Fig. 1. Plot of log (F_o/F_c) versus I_c showing the decrease of secondary extinction for the succeive *hkl* layers from l=0 to l=5.

positional parameters and 1×1 matrices for the isotropic temperature factor parameters of each atom.

(iii) Differential Fourier syntheses with the program of E. Giglio, A. Ripamonti and co-workers (Damiani, De Santis, Giglio & Ripamonti, 1963).

Special modifications to the programs used and various minor programs were written in this Institute and in the Centro di Calcolo elettronico dell'Università di Modena.

The final anisotropic refinement was performed on an IBM 7094 computer with the full-matrix ORFLS program of Busing and co-workers (Busing, Martin & Levy, 1962). R.M.S. components of atomic thermal displacement and their orientations, bond lengths and angles and their e.s.d.'s, angles between normals to planes, and other functions, were calculated on the IBM 7094 computer with the ORFEE program of Busing and co-workers (Busing, Martin & Levy, 1964).

Results and discussion

Molecular structure

The nickel atom lies at a centre of symmetry, being planar-bonded to four sulphur atoms of two dithiocarbamic ligands. The numbering of non-hydrogen atoms is given in Fig. 4(a), representing, in projection on the X-Y plane, the asymmetric unit used for the calculation.

Hydrogen atoms were identified in their calculated positions from a three-dimensional difference Fourier synthesis, using structure factors calculated only with non-hydrogen atoms.

The composite drawing of Fig.2 shows the threedimensional sections of the residual electron density,

Table 5. Peak heights (e.Å⁻³) and curvatures (e.Å⁻⁵) from differential synthesis, and their e.s.d.'s

		e	$-A_{hh}$	$-A_{kk}$	-Au	A_{hk}	Anı	Akl
Ni	obs.	37.01	314.2	329.4	210.7	157.6	0.0	9.1
	calc.	37.15	317.4	331.6	214.2	158.4	-0.1	9.2
S(1)	obs.	22.07	202.6	198.7	115.2	98 .0	- 5.8	6.6
-(-)	calc.	22.15	202.9	198.8	116.6	97.6	- 6.0	6.5
S(2)	obs.	22.43	197.4	210.3	111.0	97.6	- 10.5	9.1
()	calc.	22.49	198.0	211.1	111.8	98·0	-10.0	8.9
Ν	obs.	8.28	61.7	67.4	39.4	32.9	- 1.8	0.5
	calc.	8.24	62.7	69.3	40·2	33.7	- 1.8	0.6
C(0)	obs.	6.26	45.3	52.5	32.7	23.0	-1.6	-2.0
	calc.	6.20	46.1	53.6	34.4	23.2	-1.3	-2.3
C(1)	obs.	5.90	38.2	45.6	31.2	20.3	-2.5	2.5
- ()	calc.	5.91	39.4	46.1	31.0	20.8	-2.6	2.2
C(2)	obs.	5.23	31.6	32.9	22.7	18.0	2.7	-0.6
- 、 、	calc.	5.21	30.2	31.2	22.1	16.7	2.7	0.2
C(3)	obs.	3.97	25.6	23.2	14.4	15.3	0.1	- 1.9
	calc.	4.03	25.5	22.4	14.0	14.4	0.2	-2.5
C(4)	obs.	6.12	45.0	45.0	35.9	21.9	-0.9	- 1.6
	calc.	6.15	46.1	46.0	37.0	22.4	-1.2	<u> </u>
C(5)	obs.	5.87	41.8	42.1	28.0	21.7	- 3.9	-0.8
	calc.	5.86	41-5	41.3	28.3	21-5	- 3 ·4	- 0·9
C(6)	obs.	4.95	31.2	34.1	23.5	15.0	0.3	-0.1
.,	calc.	5.01	32.4	34.2	24.1	14.7	1.0	-0.4
		$\sigma(\varrho)$	$\sigma(A_{hh})$	$\sigma(A_{kk})$	$\sigma(A_{ll})$	$\sigma(A_{hk})$	$\sigma(A_{hl})$	$\sigma(A_{kl})$
		0.11	1.94	1.94	1.21	1.37	0.94	0.93
		~						

projected on the X-Y plane. In the numbering of hydrogen atoms the first number is that of the corresponding carbon atom. It may be observed that all hydrogen atoms of the CH₂ group are fairly well centred on the calculated positions, while the hydrogen atoms H(31), H(32), H(33), H(61), H(62) and H(63) are out of their calculated centres.

Also the electron densities at the calculated positions of hydrogen atoms (Table 6), obtained from final F_o and F_c values, show that the hydrogen atoms of the CH₂ groups have $\rho_o - \rho_c$ differences whose mean value is within the value of $\sigma(\rho) = 0.11$ e.Å⁻³ calculated for the whole structure. The hydrogen atoms of the CH₃ groups on the other hand have a mean $\rho_o - \rho_c$ value

Table 6. I	Electron densities, g	, ϱ_c and $\varrho_o - \varrho_c$ (e.	Å ^{−3}) at the	e calculated	positions of	f hydrogen	atoms
------------	-----------------------	---	--------------------------	--------------	--------------	------------	-------

Qo	Qc	$\varrho_o - \varrho_c$		Qo	Qc	Q0-Q0
0.45	0.43	+0.02	H(31)	0.44	0.86	-0.42
1.01	1.07	-0.06	H(32)	0.47	0.71	-0.24
1.32	1.47	-0.15	H(33)	1.00	1.26	-0.26
0.63	0.81	-0.18	H(61)	0.68	0.45	+0.23
0.77	0.87	-0.10	H(62)	0.59	0.81	-0.22
0.82	0.86	-0.04	H(63)	0.51	0.77	-0.26
0.82	0.89	0.02				
0.48	0.62	-0.14				
Mean	alue 0·10/			Mean v	alue 0·27/	
	<i>Qo</i> 0.45 1.01 1.32 0.63 0.77 0.82 0.82 0.48 Mean v	$\begin{array}{cccc} \varrho_{o} & \varrho_{c} \\ 0.45 & 0.43 \\ 1.01 & 1.07 \\ 1.32 & 1.47 \\ 0.63 & 0.81 \\ 0.77 & 0.87 \\ 0.82 & 0.86 \\ 0.82 & 0.89 \\ 0.48 & 0.62 \end{array}$	ρ_o ρ_c $\rho_o - \rho_c$ 0.45 0.43 $+ 0.02$ 1.01 1.07 $- 0.06$ 1.32 1.47 $- 0.15$ 0.63 0.81 $- 0.18$ 0.77 0.87 $- 0.10$ 0.82 0.86 $- 0.04$ 0.82 0.89 $- 0.07$ 0.48 0.62 $- 0.14$ Mean value 0.10 $- 0.10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 7. R.M.S. components of atomic thermal displacement (Å) along the thermal ellipsoid principal axes and their e.s.d.'s, and orientations of the ellipsoid principal axes with respect to the crystal axial vectors \mathbf{a} , \mathbf{b} , \mathbf{c} and to the vector Ni \rightarrow C(0)

	D.11		Angle (°) to reference axis						
Ni	Principal axis 1 2 3	K.M.S. displacement 0.212 (3) Å 0.231 (3) 0.238 (2)	a 42 (6) 129 (8) 77 (11)	b 73 (4) 96 (17) 19 (7)	c 131 (6) 138 (7) 83 (14)	$Ni \rightarrow C(0) 146 (6) 56 (6) 87 (10)$			
S(1)	1	0·229 (3)	48 (17)	98 (18)	120 (4)	148 (16)			
	2	0·235 (3)	133 (18)	165 (11)	96 (9)	63 (18)			
	3	0·275 (3)	73 (3)	102 (3)	30 (3)	106 (3)			
S(2)	1	0·221 (3)	39 (11)	82 (8)	124 (8)	153 (10)			
	2	0·233 (3)	128 (11)	141 (4)	125 (7)	68 (11)			
	3	0·262 (3)	98 (3)	52 (4)	127 (4)	76 (3)			
N	1	0·208 (9)	46 (16)	93 (9)	123 (17)	149 (17)			
	2	0·233 (9)	130 (16)	113 (14)	139 (16)	60 (17)			
	3	0·261 (8)	72 (10)	23 (14)	111 (13)	97 (9)			
C(0)	1	0·193 (14)	102 (18)	74 (9)	151 (14)	79 (19)			
	2	0·220 (10)	158 (13)	107 (12)	71 (18)	11 (19)			
	3	0·261 (10)	72 (10)	24 (10)	69 (8)	91 (10)			
C(1)	1	0·209 (11)	48 (8)	99 (6)	119 (12)	148 (9)			
	2	0·255 (13)	111 (15)	84 (18)	151 (12)	72 (13)			
	3	0·284 (10)	50 (9)	10 (10)	89 (16)	116 (8)			
C(2)	1	0·264 (12)	48 (11)	108 (11)	93 (11)	147 (11)			
	2	0·316 (12)	135 (43)	157 (79)	75 (27)	57 (14)			
	3	0·320 (15)	77 (92)	76 (21)	16 (25)	93 (70)			
C(3)	1	0·258 (13)	109 (7)	49 (7)	89 (6)	56 (7)			
	2	0·331 (14)	149 (10)	133 (9)	116 (12)	46 (10)			
	3	0·387 (16)	114 (11)	110 (9)	26 (12)	62 (10)			
C(4)	1	0·208 (15)	89 (40)	79 (23)	12 (9)	80 (39)			
	2	0·220 (9)	178 (22)	121 (13)	89 (39)	17 (25)			
	3	0·271 (10)	91 (8)	33 (8)	102 (9)	76 (9)			
C (5)	1	0·241 (14)	78 (18)	63 (53)	27 (46)	89 (17)			
	2	0·246 (10)	167 (12)	111 (61)	81 (6)	6 (41)			
	3	0·270 (11)	86 (19)	35 (19)	115 (20)	84 (19)			
C(5)	1	0·234 (10)	20 (15)	47 (11)	104 (25)	151 (7)			
	2	0·256 (14)	101 (24)	105 (19)	165 (22)	89 (23)			
	3	0·304 (11)	106 (7)	47 (7)	97 (11)	61 (7)			

more than twice that of the $\sigma(\varrho)$ value. It may be assumed that the positions of the CH₂ hydrogen atoms are sufficiently reliable for their intermolecular distances to be considered significant.

The greater displacement from the calculated positions of the hydrogen atoms of the CH_3 groups may be due to the greater anisotropic motion and to the possibility of free rotation of the terminal methyl groups. This is specially true for the C(3) group which lies on the surface of a vertical CH_3 channel (Fig. 5) in which hydrogen atoms of neighbouring groups can interfere sterically each other.

R.M.S. components of atomic thermal displacement in Å (with their e.s.d.'s) along the ellipsoid principal axes 1 < 2 < 3 and the orientations of the ellipsoid principal axes with respect to the crystal axial vectors **a**, **b**, **c**, and to the vector Ni \rightarrow C(0) were calculated with

Fig.2. Sections of the difference electron density map, projected on the X-Y plane, corresponding to the calculated positions for hydrogen atoms. Contours are at 0.1 e.Å⁻³ intervals, beginning with the 0.15 e.Å⁻³ contour.

Fig. 3. Projection of the thermal ellipsoids along an axis normal to Y and making an angle of about 55° with the X - Y plane. 1,2,3 are the principal axes of the ellipsoid in the order: minimum, medium, maximum.

the ORFEE program (Busing, Martin & Levy, 1964) (Table 7). The projection of the thermal ellipsoids along an axis normal to Y axis and making an angle of about -55° with the X-Y plane is shown in Fig. 3. The maximum thermal displacement of the C(3) atom is in a direction close to the c axis, that is to the axis of the CH₃ channel indicated by a circle in Fig. 5. The direction of maximum thermal displacement for the atoms C(4), C(5), C(6) is almost normal to their plane.

Bond lengths and angles (with their e.s.d.'s) were calculated with the ORFEE program (Busing, Martin & Levy, 1964). Table 8 shows the comparison of the set of values obtained from 1213 reflexions less affected by and uncorrected for secondary extinction with the set of values obtained from 1327 reflexions corrected for secondary extinction. It may be remarked that the e.s.d. values calculated with the ORFEE program may perhaps be a little optimistic. The greater differences between the two series of values are on the carboncarbon distances. Their positions are more sensitive to the 114 reflexions which were excluded from the first set of 1213 reflexions as they are more affected by secondary extinction and have lower sin θ/λ values.

Fig. 4. (a) Bond distances (Å) and (b) angles for the asymmetric unit.

Table 8. Bond lengths and angles and their e.s.d.'s

- (A) Values obtained from least-squares refinement of 1213 reflexions without secondary extinction correction. R = 0.087.
- (B) Values obtained from least-squares refinement of 1327 reflexions corrected for secondary extinction. R=0.075.

	((A)	(B)
Ni - S(1)	2.100	- 0.002 Å	2·209 ±	- 0.002 Å
S(1) - C(0)	1.726	0.002	1.722	0.002
S(2) - C(0)	1.702	0.008	1.693	0.008
NC(0)	1.33	0.009	1.33	0.009
N C(1)	1.47	0.010	1.46	0.010
NC(4)	1.48	0.010	1.48	0.010
C(1)-C(2)	1.56	0.014	1.54	0.013
C(2) - C(3)	1.55	0.012	1.54	0.014
C(4) - C(5)	1.51	0.013	1.48	0.012
C(5)–C(6)	1.52	0.013	1.54	0.012
	((A)	(B)
S(1) - Ni - S(2)	79°23	$3' \pm 05'$	79°11	' ± 05'
Ni - S(1) - C(0)	84 36	5 16	84 31	16
Ni - S(2) - C(0)	85 28	3 16	85 33	3 16
S(1) - C(0) - S(2)	110 27	25	110 37	25
S(1) - C(0) - N	124 34	1 39	124 18	37
S(2) - C(0) - N	124 54	4 38	125 02	2 37
C(0)-N-C(1)	121 48	3 42	122 06	5 41
C(0)-NC(4)	120 00) 41	120 16	5 39
C(1)-NC(4)	118 08	3 38	117 35	5 37
N - C(1) - C(2)	110 10) 44	111 22	2 46
C(1)-C(2)-C(3)	107 10) 56	108 39) 56
N - C(4) - C(5)	112 14	41	112 35	5 41
C(4)-C(5)-C(6)	110 31	46	111 26	5 45

In the following discussion only the bond lengths and angles obtained from the 1327 reflexions, corrected for secondary extinction, will be considered.

The Ni–S distances (2·209 and 2·197 Å), in very good agreement with those (2·207 and 2·195 Å) obtained for nickel(II) bis(N,N-diethyldithiocarbamate) (Bonamico, Dessy, Mariani, Vaciago & Zambonelli, 1965), lie in the range 2·1–2·3 Å now accepted for Ni–S bonds in four planar coordinated diamagnetic complexes of nickel: *e.g.* 2·16 Å in bisthiosemicarbazidato-nickel(II) (Cavalca, Nardelli & Fava, 1962); 2·23, 2·24 Å in nickel xanthate (Franzini, 1963).

The S-C distances (1.722 and 1.693 Å) are close to those (1.713 and 1.700 Å) obtained for nickel(II) bis-(*N*,*N*-diethyldithiocarbamate); their average value, S-C 1.71 Å, seems to be normal for a S-C(sp^2) bond.

The S(1)-Ni-S(2) angle $(79^{\circ}11')$ corresponds to a distortion from exact square planar coordination with dsp^2 hybridization of the valence orbitals of the nickel atom, due to the strain in the four-membered ring. In both dipropyl- and diethyl-dithiocarbamates the four membered rings show a dissymmetry between the two Ni-S and the two C(0)-S bonds; their differences are:

	Propyl derivative	Ethyl derivative
Ni-S(1) > Ni-S(2)	0∙012 Å	0∙012 Å
C(0)-S(1)>C(0)-S(2)	0.029	0.013

Fig. 5. Projection of part of the crystal structure on the X - Y plane, showing the environment of the central molecule and the principal intermolecular distances. Asymmetric units are indicated by their order number inscribed in an O.

These differences could be considered significant in admitting a different contribution of the two forms, (A) slightly greater than (C):

double bond order, in the LCAO-MO approximation, calculated by Coulson's formula for the C-C bond (Coulson, 1939), modified for the C-N bond by Liquori and Vaciago (Liquori & Vaciago, 1965; Favini, Mazzeo & Vaciago, 1963):

$$R = S - \frac{S - D}{1 + 0.6625 (1 - p)/p} \qquad S = 1.475 \text{ Å}$$
$$D = 1.280 \text{ Å}$$

is p = 0.65.

It is therefore confirmed that the (B) form, as already recognized by infrared spectroscopic work (Chatt, Duncanson & Venanzi, 1956*a*,*b*) is an important canonical form in the structure of dialkyldithiocarbamates, while the \cdots S₂C=OR form makes only a minor contribution to the structure of xanthates (Chatt, Duncanson & Venanzi, 1956*a*,*b*) as is also shown by the longer C-O=1.38 Å distance in nickel xanthate (Franzini, 1963).

The N-C(1) (1.46 Å) and N-C(4) (1.48 Å) bonds have an average value (1.47 Å) close to the value of 1.475 Å for a N-C single bond.

The N-C(0) bond (1.33 Å), as in nickel diethyldithiocarbamate, shows a high double bond character. Its

Table 9. Coefficients (×10³) of the least-squares planes of the form x+By+Cz+D=0 and atom deviations from the planes

Planarity of the molecule

The central part of the molecule is approximately planar as far as the C(1) and C(4) atoms. The deviations of the atoms of this central part of the molecule from six least-square planes are listed in Table 9. From the more general plane no. 6, which includes C(1) and C(4) atoms, the atoms have a maximum and mean deviation of 0.100 and 0.060 Å respectively.

Table 10 gives the angles between the normals to some planes of this central part of the molecule: the dihedral angle of the planes $Ni-S(1)-S(2) \land N-C(4)-C(1)$ has a value of $8^{\circ}29'$ and the dihedral angles $Ni-S(2)-S(1) \land C(0)-S(1)-S(2) \land N-C(4)-C(1)$ a value of about 4° ; all other dihedral angles have values of about 3° .

Table 10. Angles between normals to planes, each defined by three atoms (1,2,3) and (4,5,6), and their e.s.d.'s

The direction of the normals is that of $(1 \rightarrow 2) \times (1 \rightarrow 3)$ and $(4 \rightarrow 5) \times (4 \rightarrow 6)$ where $(1 \rightarrow 2)$ is the vector defined by atoms 1 and 2 *etc*.

1,2,3	4,5,6	
Ni $-S(2)-S(1)$	N C(4) - C(1)	8°29′±0°43′
C(0)-S(2)-N	N - C(0) - C(4)	0 38 1 08
N - C(1) - C(0)	C(0)-N-S(1)	0 37 1 10
Ni - S(2) - S(1)	C(0)-S(1)-S(2)	4 06 0 30
C(0)-S(1)-S(2)	N - C(4) - C(1)	4 24 0 51
S(1) - Ni - C(0)	S(2) - C(0) - Ni	3 37 0 26
C(0)-N-S(1)	C(0)-S(2)-N	2 48 1 13
N - C(1) - C(0)	N - C(0) - C(4)	2 49 1 15
N - C(4) - C(1)	N - C(0) - C(4)	2 41 1 12
N - C(4) - C(1)	N - C(1) - C(0)	2 45 1 13
C(0)-S(1)-S(2)	C(0)-S(2)-N	2 28 1 05
C(0)-S(1)-S(2)	C(0)-N-S(1)	2 27 1 04

Intermolecular contacts

The environment of the central molecule with Ni in position $(\frac{1}{2}, \frac{1}{2}, 0)$ is represented in Fig.5 with some intermolecular distances. In Figs.5 and 6, in Table 11 and in the text the asymmetric units not related by a centre of symmetry are numbered 1 to 9 in the same sequence as in *International Tables for X-ray Crystallo*graphy (1952) for the space group $R\overline{3}$ (no. 148), with hexagonal axes; the asymmetric units related to the units 1–9 by a centre of symmetry are numbered 10 to 18. An asymmetric unit belonging to the lower cell and corresponding to the one labelled in Fig. 5 is indicated by the same number with a prime.

Table 11. Intermolecular distances shorter than 4.0 Å, from atoms of asymmetric unit (1) to atoms of asymmetric units (6'), (8) and (8')

Ni(1)-C(4.8)	3·99 Å
S(1.1) - C(6.8)	3.99
S(2.1) - C(4.8)	3.75
S(2.1) - C(5.8')	3.68
S(2.1) - C(6.8')	3.99
S(2.1) - C(5.6')	3.90
S(2.1) - C(6.6')	3.86
C(0.1) - C(6.8)	3.86
N(1) - C(6.8)	3.99

Three methyl groups are coplanar around the trigonal axis at a van der Waals distance C-C of 4.05 Å. Each methyl group has C-C distances of 4.55 Å from the nearest methyl group of the plane above, and of 4.98 Å from the nearest methyl group of the plane below. These distances may explain the greater free-

Fig. 6. Contacts of Ni and S(2) atoms of the asymmetric unit (1) and their interatomic distances and angles to hydrogen atoms bonded to C(4) and C(5) atoms of the asymmetric units (8), (8'), (14) and (14').

dom of thermal motion observed for the C(3) atom approximately along the trigonal axis, which is the axis of the channel formed by superposition of successive planes of three methyl groups.

The intermolecular distances, between non-hydrogen atoms, shorter than 4.0 Å, are listed in Table 11 and Fig. 5. It has already been shown that the CH₂ hydrogen atom positions may be sufficiently reliable; the distances and angles of the intermolecular contacts between Ni and S(2) atoms of the asymmetric unit 1 and the hydrogen atoms H(41), H(42) of the asymmetric unit 8 and H(51), H(52) of the asymmetric unit 8' are therefore given in Fig. 6.

The S(2)-H(41-8) distance (2.88 Å) is shorter than the van der Waals contact $S \cdots H$ (3.05 Å) (Pauling, 1960) by 0.17 Å; the same distance is obtained from the 1213 reflexions not corrected for secondary extinction. The direction of the S(2)-H(41-8) contact makes angles of 91° with the S(2)-C(0) and S(2)-Ni bonds, being normal to the plane of these two sulphur bonds. This short contact may correspond to a definite CH··S interaction or hydrogen bond.

It has been observed (Chatt, Duncanson & Venanzi, 1956*a*, *b*) that, in the dialkyldithiocarbamates, sulphur atoms, being conjugate to the strongly electron releasing NR₂ group, behave as electron acceptors in their *d*-orbitals. The induction effect of the propyl groups on the central part of the molecule might also be considered. Most of the C-H···X bonds [Pimentel & McClellan (1960) and further literature] concern more electronegative atoms X like oxygen and nitrogen; also a CH···Cl intramolecular interaction has been reported (Pinchas, 1955), but involving an aldehydic CH group. In the dipropyldithiocarbamate the mesomeric drift of electrons into the sulphur atom may favor the formation of a CH···S interaction or hydrogen bond.

The atom C(4) is involved in the CH---S interaction and this may contribute to the shortening of the C(4)– C(5) distance, owing to increased electron density in this bond. However, the value of this bond length, derived from the 1213 reflexions without the secondary extinction correction, is 1.51 Å, which is not significantly shorter than the normal single-bond length.

The S(2)-H(52-8') distance (3.07 Å) has almost the theoretical value of the S \cdots H van der Waals contact even if the S(2)-C(5-8') distance (3.68 Å) is shorter than the van der Waals CH₂ \cdots S contact of 3.85 Å.

The Ni–C(4) distance (3.99 Å) of the nickel dipropyldithiocarbamate is much longer than the Ni–C(2) distance (3.54 Å) found in the nickel diethyldithiocarbamate.

The Ni-H(42-8) contact (3.24 Å) is the shortest Ni-H distance, but still very large indeed. This contact is nevertheless remarkable since it makes an angle of 93° with the Ni-S(1) bond and of 80° with the Ni-S(2) bond, being almost perpendicular to the Ni-S(1)-S(2) plane. Two H(42) atoms are centrosymmetrically situated in very elongated, almost octahedral sites with respect to the nickel atom, but at a much greater distance than in the nickel(II) bis(N,N-diethyldithiocarbamate), in which the shortest Ni-H distance which can be calculated from the given atom parameters (Bonamico, Dessy, Mariani, Vaciago & Zambonelli, 1965) is Ni-H(2a), 2.63 Å.

It seems therefore that in the crystal structures of both these nickel dithiocarbamates, as in copper(II) bis(N,N-diethyldithiocarbamate) (Bonamico, Dessy, Mugnoli, Vaciago & Zambonelli, 1965), the intermolecular CH hydrogen contacts with the central part of the molecule can play a definite role.

In nickel dipropyldithiocarbamate the more important hydrogen contacts concern two sulphur atoms centrosymmetric to the nickel atom, while in nickel diethyldithiocarbamate the hydrogen contact seems to concern the nickel atom.

References

- Albano, V., Bellon, P. L. & Pompa, F. (1963). *Ric. sci.* 33, 285.
- BONAMICO, M., DESSY, G., MARIANI, C., VACIAGO, A. & ZAMBONELLI, L. (1965). *Acta Cryst.* **19**, 619.
- BONAMICO, M., DESSY, G., MUGNOLI, A., VACIAGO, A. & ZAMBONELLI, L. (1965). Acta Cryst. 19, 886.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Oak Ridge National Laboratory, Tennessee.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFEE, A Fortran Crystallographic Function and Error Program. Oak Ridge National Laboratory, Tennessee.
- CAMBI, L. & CORISELLI, C. (1936). Gazz. chim. ital. 66, 779.
- CAVALCA, L., NARDELLI, M. & FAVA, G. (1962). Acta Cryst. 15, 1139.
- CHATT, J., DUNCANSON, L. A. & VENANZI, L. M. (1956a). Nature, Lond. 177, 1042.
- CHATT, J., DUNCANSON, L. A. & VENANZI, L. M. (1956b). Suomen Kem. B, 29, 75.
- COULSON, C. A. (1939). Proc. Roy. Soc. A, 169, 413.
- DAMIANI, A., DE SANTIS, P., GIGLIO, E. & RIPAMONTI, A. (1963). *Ric. sci.* 33, 965.
- FAVINI, G., MAZZEO, P. & VACIAGO, A. (1963). *Ric. sci.* 33, (II-A), 483.
- FRANZINI, M. (1963). Z. Kristallogr. 118, 393.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- HOUSTY, J. & CLASTRE, J. (1957). Acta Cryst. 10, 695.
- International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.
- KING, G. S. D. & VAN DER HELM, D. (1963). A Crystallographic Fourier Summation Program for the IBM 1620 Data Processing System. ERA 210. Brussels: Union Carbide European Research Associates.
- KING, G. S. D. (1964). A Crystallographic Fourier Preparation Program for the IBM 1620 Data Processing System. ERA 235. Brussels: Union Carbide European Research Associates.
- LIQUORI, A. M. & VACIAGO, A. (1956). *Gazz. chim. ital.* 86, 769.
- MALATESTA, L. (1937). Gazz. chim. ital. 67, 738.
- MALATESTA, L. (1940a). Gazz. chim. ital. 70, 541.
- MALATESTA, L. (1940b). Gazz. chim. ital. 70, 553.

- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- PEYRONEL, G. (1940). Z. Kristallogr. 103, 139.
- PEYRONEL, G. (1941). Z. Kristallogr. 103, 157.
- PEYRONEL, G. & PIGNEDOLI, A. (1959a). Ric. sci. 29, 1218.
- PEYRONEL, G. & PIGNEDOLI, A. (1959b). Ric. sci. 29, 1505.
- PIGNEDOLI, A. & PEYRONEL, G. (1962). Gazz. chim. ital. 92, 745.
- PIMENTEL, G. C. & McClellan, A. L. (1960). *The Hydrogen Bond*. London: W. H. Freeman.

PINCHAS, S. (1955). Anal. Chem. 27, 2.

- POMPA, F., ALBANO. V., BELLON, P. L. & SCATTURIN, V. (1963). *Ric. sci.* 33, 1151.
- SHUGAM, E. A. & LEVINA, V. M. (1960). Kristallografiya, 5, 257. (English translation (1960) in Soviet Phys. Crystallogr. 5, 239).
- THORN, G. D. & LUDWIG, R. A. (1962). *The Dithiocarbamates and Related Compounds*. Amsterdam and New York: Elsevier.
- ÅSBRINK, S. & WERNER, P. E. (1966). Acta Cryst. 20, 407.

Acta Cryst. (1967). 23, 410

The Crystal Structure of Ethyl Carbamate

BY B. H. BRACHER* AND R.W. H. SMALL[†]

Chemistry Department, University of Birmingham, England

(Received 9 March 1967)

The structure of ethyl carbamate (urethane, C_2H_5 .O.CONH₂) has been determined using threedimensional X-ray intensities measured with a proportional counter at two different temperatures. Atomic positions and anisotropic vibrational parameters have been refined by the method of least squares, and the vibrational parameters interpreted in terms of the rigid -body vibrations of the molecule.

Introduction

Several high-accuracy X-ray studies of the amide group have been made in recent years, including some in this laboratory using the three-circle diffractometer of Small & Travers (1961). In connection with these studies, the determination of the structure of ethyl carbamate is of interest in enabling a comparison to be made between the amidic C-O and C-N bond lengths in the carbamate group and those in other amides. Further interest lies in the length of the C-O bond connecting the carbamate group to the ethyl group, for studies of similar bonds in carboxylic acid esters (O'Gorman, Shand & Schomaker, 1950; Dougill & Jeffrey, 1953), tend to suggest that this bond is much longer than would be expected for a single C-O bond, although no really accurate evidence for this is yet available.

Intensity data measured for a crystal at room temperature ca. 25 °C showed that large atomic vibrations were present in ethyl carbamate crystals at this temperature. With a view to achieving greater accuracy from an increased number of measurements, the intensity measurements were repeated at -105 °C. Although more reflexions were observed at this temperature, the accuracy of the molecular parameters derived was not improved. Inaccuracies in the intensity measurements at the lower temperature arose from the design of the cooling system which was still under development at that time.

Crystal data

Crystals of ethyl carbamate, suitable for X-ray analysis, were obtained from a commercial sample by slow evaporation of an ethereal solution containing a small amount of light petroleum. The crystals were found to evaporate rapidly at normal temperatures, and it was necessary to seal them in Lindemann or 'Pantak' capillary tubes for all diffraction work. This process was usually hindered by the rather plastic nature of the crystals.

Preliminary Weissenberg photographs showed that ethyl carbamate crystallizes in the triclinic system, but accurate measurement of the unit-cell dimensions by the usual photographic methods was prohibited by a complete lack of observable reflexions at high Bragg angles. The suitability of diffractometer methods for precision cell dimension measurement has been demonstrated by Bond (1960) and so the instrument of Small & Travers was used in the following way for this purpose.

For a series of orders of reflexion from a certain set of crystal planes, line profiles were plotted with 2θ fixed and ω moving for each reflexion, the angles φ and χ being kept fixed throughout. To remove zero errors arising from both the instrument itself and missettings of φ and χ the 'observed' interplanar spacing for each measured value of θ_{obs} was plotted against

^{*} Present address: Ceramics Division, Atomic Energy Research Establishment, Harwell, Didcot, Berks, England. † Present address: Chemistry Department, University of Lancaster, St. Leonard Gate, Lancaster, England.